Sunday, November 30, 2014

Arithmetic Progression

 The sequence  p1, p2 ... and q1, q2 … are in arithmetic progressions such that p1q1 = 50 and p11  p10 = q99 q100. Find the sum of the first 100 terms of the progression, 
p1 + q1),( p2 + q2) 



Answer:
The common difference between the 2 sequence is same but one is negative, given p11  p10 = q99 − q100. 
negative So, ( p2 + q2)  = p1 + q1) = pn + qn)
therefore, the sum of the series = 50 x 100 = 5000

No comments:

Post a Comment