Showing posts with label fractions. Show all posts
Showing posts with label fractions. Show all posts

Saturday, October 25, 2014

continued fraction

 









continued fraction

                                                                                                                                           



   




Monday, August 11, 2014

Multiplication and division of fractions STD IV


Multiplication and division of fractions. gentle paced, elaborat video

http://www.mathtutor.ac.uk/arithmetic/fractionsmultiplyinganddividing/video

addition and subtraction of fraction STD III and STD IV

video tutorial on addition and subtraction of fraction.

excellent tutorial

http://www.mathtutor.ac.uk/arithmetic/fractiomsaddingandsubtracting/video

basics of fraction for STD III - video tutorial


I feel this is a very good video tutorial on fraction.

http://www.mathtutor.ac.uk/arithmetic/fractionsbasicideas/video

Thursday, July 11, 2013

To find fractions between 2 fractions


Find 4 fractions which lie between 14/23 and 15/23?

Converting 14/23 into equivalent fraction we have =  14 x 5   =  70
                                                                                          23 x 5       115

Converting 15/23 into equivalent fraction we have =  15 x 5   =   75
                                                                                           23 x 5      115

So, the fractions are,

70/115, 71/115, 72/115, 73/115, 74/115, 75/115

express recurring decimal number into fraction (2)


How to express recurring decimal number into fraction?

Let us take the example of 0.534534534…..

Let “x” = 0.534534534………..        (1)

Since, 0.534 is recurring, we will multiply by 1000. The decimal side will remain unchanged.

So, 1000x = 534.534534534……….                (2)

Subtracting (1) from (2), we have

999x = 534

Or, x = 534/999 

 Answer


recurring decimal to fraction


How to express recurring decimal number into fraction?

Let us take the example of 34.56565656565…..

Let “x” = 34.5656565656………..                     (1)

Since, 0.56 is recurring, we will multiply by 100. The decimal side will remain unchanged.

So, 100x = 3456.565656……….       (2)

Subtracting (1) from (2), we have

99x = 3422


Or, x = 3422/99 
or x   =  34 56/99 
Answer