If α and β are the complex cube roots of unity, and x = a +
b, y = aα+ bβ and z = aβ + bα, then the value of xyz
=.............................
Answer:
x3 = 1, or (x3 – 1) = 0, or (x – 1)(x2
+ x + 1) = 0
Now, (x2 + x + 1) = 0
Or, (x2 + 2.x.½ + ¼ - ¼ + 1) = 0
Or, x = - ½ ± i√3/2
Therefore, y = aα+ bβ = a(i√3 – 1)/2 - b(i√3 + 1)/2
Also, z = aβ + bα = - a(i√3 + 1)/2 + b(i√3 – 1)/2
So, xyz = (a + b) [a(i√3 – 1) - b(i√3 + 1)] [- a(i√3 + 1) +
b(i√3 – 1)]/4
Or, xyz = (a+ b) [4a2 + ab.( -2 – 2i√3) + ab.(-2
+ 2i√3) + 4b2]/4
Or, xyz = (a+ b) [4a2 - 4ab + 4b2]/4
Or, xyz = 4.(a+ b) [a2 - ab +b2]/4
Or, xyz = a3 + b3
No comments:
Post a Comment