Tuesday, July 23, 2013

algebric identity




If  x/y + y/x = -1, then find the value of x3 –y3





Answer:

(x - y)3 = x3 - 3x2y + 3xy2 - y3

Or, (x - y)3 =  x3 – 3xy(x - y)  – y3

Or, x3– y3 = (x - y)3 + 3xy(x - y)

Or, x3– y3 = (x - y)[(x - y)2  + 3xy]       ----------(1)

Since, x/y + y/x = -1, multiply throughout by xy, we get

x2 + y2 = -xy    -----------(2)

Also, (x- y)2 = x2 + y2 – 2xy = -xy – 2xy = -3xy  (by substituting (2)

Substituting the value of (x- y)2  in (1), we get

x3– y3 = (x - y)[ -3xy + 3xy]   = 0     







 

No comments:

Post a Comment