If x/y + y/x
= -1, then find the value of x3
–y3
Answer:
(x - y)3
= x3 - 3x2y + 3xy2 - y3
Or, (x -
y)3 = x3
– 3xy(x - y) – y3
Or, x3–
y3 = (x - y)3 + 3xy(x - y)
Or, x3–
y3 = (x - y)[(x - y)2 + 3xy]
----------(1)
Since, x/y
+ y/x = -1, multiply throughout by xy, we get
x2
+ y2 = -xy -----------(2)
Also, (x-
y)2 = x2 + y2 – 2xy = -xy – 2xy = -3xy (by substituting (2)
Substituting the value of (x- y)2
in (1), we get
x3–
y3 = (x - y)[ -3xy + 3xy] = 0
No comments:
Post a Comment