Wednesday, July 17, 2013

harder factorisation



Resolve into factors:

15 y2 + 22y – 48







Answer:
Multiply and divide the expression by 15.
So,  1/15 {(15y)2 + 22.15y – 48.15}
Let 15y = x
Therefore, 1/15 {x2 + 22x - 720}
=1/15{x2 + 40x – 18x - 720}
=1/15(x+40)(x-18)
=1/15(15y +40)(15y- 18)  substituting x = 15y
= (3y +8)(5y -6)


Resolve into factors:

28 + 31p -5p2




Answer:
28 + 31p -5p2
=28 + 35p – 4p - 5p2
=7(4 + 5p) –p(4 + 5p)
= (7 – p)(4 + 5p)




 

Resolve into factors:

15 + 16p – 15p2






Answer:

15 + 16p – 15p2

Multiply and divide the numerator and denominator by 15

= 1/15{15.15 + 15.16p – (15p)2}

Let, 15p = y

= -1/15{y2 – 16y +15} 

=-1/15{y2 – 15y - y +15} 

=-1/15{y(y – 15) -1( y -15)} 

= -1/15(y -1)(y – 15)

= -1/15(15p -1)(15p -15)

= - (15p -1)(p – 1)

= (15p -1)(1- p)



No comments:

Post a Comment